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ABSTRACT 

There are two well-known approaches to recognizing automorphisms of a 

free group, i.e., to distinguishing automorphisms from non-automorphisms. 

The first one is the "inverse function theorem" of Birman. The second one, 

the "test element" approach, was originated by Nielsen for the free group 

of rank 2 and then extended to free groups of arbitrary finite rank by 

Zieschang, Rosenberger and others. In this note, we establish a direct 

connection between these two approaches: we associate a special matrix 

with any element of a free group, and show that an automorphism can be 

distinguished from a non*automorphism in terms of invertibility of such a 

matrix associated with a particular single element. Similar results hold for 

free associative and Lie algebras. 

1. I n t r o d u c t i o n  

Let F = Fn be the free group of a finite rank n _> 2 with a system {x~ }, 1 < i < n, 

of free generators. By Aut F we denote the group of automorphisms, and by 

End F - -  the semigroup of endomorphisms of the group F. 

We call u E F a tes t  e l e m e n t  if r = (~(u) for some r E End F and 

E Aut F implies that r is actually an automorphism. In other words, we can 

distinguish an automorphism from a non-automorphism by means of its value on 

a single element, a test element. The condition r = a(u) can be obviously 

replaced here with just r = u. There are many test elements known by 
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now; the first one has been exhibited by Nielsen [8] in the group F2 - -  it is 

u = [xl, x2]. Then we can mention results of Zieschang [1811 [19], Rosenberger 

[11], [12] (u = x T x ~ . . . x  m, m >_ 2; u = [Xl, X2].. .[xn_l,xn] if n is even, and 

some others) and Rips [10] (u = Ix1,.. .  ,xn]). Dold [3] has found a series of test 

elements described in graph theoretic terms. Some necessary conditions for u 

to be a test element are given in [16]. Recently, Turner [17] has proved that  an 

element of F is a test element if and only if it does not belong to any proper 

retract of F.  However, there is still no effective procedure known for recognizing 

a test element. 

In this note, we establish a direct connection between the "test element" 

approach to recognizing automorphisms and another approach, the so-called "in- 

verse function theorem" due to Birman [1]. She proved the following: let r be 

an endomorphism of the group Fn given by r xi -* Yi, 1 < i < n. Define the 

matrix Jr = [[dj(yl)Hl<_i,j<_n (the "Jacobian matrix" of r where dj denotes Fox 

derivation in the free group ring Z F  (see [4]). Then Yl , . . . ,  yn generate the group 

Fn if and only if the matrix Jr is invertible. 

Here we define for any element u E F, the "double Jacobian matrix" D~, = 

[]d~(dj(u))[[l<i,j<~, where dj is the "usual", or left Fox derivation, and d~ is the 

right Fox derivation. Then we prove: 

THEOREM 3.1: Let r be an endomorphism of  the group F.  It is an automor- 

phism: 

(i) i f  and only i f  the matr ix  Dr is invertible over Z F  with u = [xl, x2]""  

[Xn-l,Xn], n even; 

(ii) i f  and only i f  the natural image over Z2F of  the matr ix  De(,,) is invertible 
2 2 2 over Z2F with u = x l x 2 . . . x  n. 

A further goal of ours is to present elements with a stronger property than that 

just described; namely, we want to distinguish any two different endomorphisms 

of F by means of their value on a single element. There are no elements u 

with this property in the group F itself; in fact, we cannot even distinguish 

two automorphisms in this manner because every group element has non-trivial 

stabilizer in Aut F. However, if we linearly extend an endomorphism of the 

group F to the group ring ZF,  it becomes possible to find such elements in ZF;  

the simplest example is u = Zl<i<n pi(xi  - 1) 2 with different odd integers p~ 

(Proposition 3.5). 
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Some of these test elements from the group ring Z F  have one more interesting 

property. Being in the image of an endomorphism of F (linearly extended to 

ZF) ,  they "enforce" this endomorphism to be an automorphism. More precisely: 

if for some v C Z F  one has r = u, then r is an automorphism. Again, 

there are obviously no elements with this property in the group F itself; however 

Rosenberger [11], [12] has proved that  some elements of F (for example, u = 

x ~ x ~ . . ,  x'~, m >_ 2) satisfy the following alternative: u E r  implies that  

either r is an automorphism or u is a primitive element of the free group r  

This is the best possible result one can get considering test elements in the group 

F; but in the ring Z F  we exhibit an element (u = ~..l<~<,~(x~ - 1) 2) for which 

only the first possibility in Rosenberger's alternative can occur (Theorem 3.3). 

Finally, we note that  a remarkable result of Turner [17] implies that  if an 

element of F cannot be fixed by a non-monomorphism, then in fact it cannot be 

fixed by a non-automorphism. 

The arrangement of the paper  is as follows. In Section 2, we give necessary 

details on Fox calculus in the free group ring. In Section 3, we prove the results 

described above and then extend them to groups of the form F/[R ,  R] (Proposi- 

tion 3.6). In the concluding Section 4, we consider these issues for free associative 

and Lie algebras and get similar results. 

2. Fox calculus  

Let Z F  be the integral group ring of the group F and A F its augmentat ion ideal, 

that  is, the kernel of the natural  homomorphism a: Z F  --* Z. More generally, 

when R C_ F is a normal subgroup of F,  we denote by A R the ideal of Z F  

generated by all elements of the form (r - 1), r E R. It  is the kernel of the 

natural  homomorphism aR: Z F  ---* Z ( F / R ) .  

In [4], Fox gave a detailed account of the differential calculus in a free group 

ring; we only recall a few things very briefly referring to [5] for more details. 

The ideal Ap is a free left ZF-  module with a free basis {(x~ - 1)}, 1 < i < n, 

and left Fox derivations di are projections to the corresponding free cyclic direct 

summands.  Thus any element u E AS can be uniquely written in the form 

u = ~ id i (u ) (x i  - 1). 

As the ideal AF is a free right ZF-module  as well, one can define right Fox 

derivatives d~(u) accordingly, so that  u = Ei (x l  - 1)d~(u). 

One can extend these derivations linearly to the whole 7/,F defining d~(1) = 
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di(1) = 0. 

The next lemma is an immediate consequence of the definitions. 

LEMMA 2.1: Let J be an arbitrary left (right) ideal of ZF  and let u E AF. Then 

U E A F J  (U E JAR)  i f  and only ifd~(u) �9 J (di(u) �9 J) for each i, 1 < i < n. 

We need the "chain rule" for left and right Fox derivations (el. [4]): 

LEMMA 2.2: Let r be an endomorphism of F (it can be linearly extended to 

ZF)  defined by r = Yk, 1 < k <_ n, and let v = r for some u, v �9 ZF.  

Then: 

(a) dj(v) = gl<k<nr 

(b) d}(v) = gl<k<nd}(yk)r 

Remark 2.3: Since the augmentation ideal of any group ring ZpF, p a prime, is 

a free left and right module over this ring, it is possible to consider Fox calculus 

in the rings gpF  as well, and all technical results including Lemma 2.2 hold also 

in that situation. 

3. Tes t  e l e m e n t s  in g r o u p s  a n d  g r o u p  r ings 

THEOREM 3.1: Let r be an endomorphism of the group F. It is an automor- 

phism: 

(i) i f  and only i f  the matrix Dr is invertible over Z F  with u = [xl,x=].. .  

[x,-1,  xn], n even; 

(ii) if and only i f  the natural image over Z2F of the matrix De0, ) is invertible 
2 2 2 

o v e r  Z 2 F  w i t h  u -= X l X 2 . . .  x n .  

Proof: (i) Let r = y i ,  1 < i < n ,  n = 2 m ,  and let v =  r A p p l y a l e f t  

Fox derivation dj to both sides of this equality; by Lemma 2.2 (a), this gives 

(1) dj(v) = E r 
l<k<n 

Note that every r has augmentation 0 since u belongs to the commutator 

subgroup F' ,  so that dk(U) E AF, 1 < k < n. Applying now a right Fox derivation 

d~ to both sides of (.1), we get by Lemma 2.2 (b): 

(2) 
l < k < n  l < m < n  
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When i and j run through {1 , . . . ,  n}, (2) becomes a system of n 2 equalities 

which can be written in the matrix form as follows: 

(3) Dr ) : J~cr 

where Jr = IIds(yl)lll~i,j~. is the left Jacobian matrix of r Y~ = IId~(yj)lll<_i,j<_n 
is the right Jacobian matrix of r 

Suppose the matrix Dr is invertible. Then every matrix on the right hand 

side of (3) must be invertible too, which implies r is an automorphism in view 

of the cited Birman's result. 

Conversely, suppose r is an automorphism. Then, again by Birman's theorem, 

the matrices J~ and Jr are invertible (actually the result of Birman applies to 

the matrix Jr but applying Lemma 2.2 (b) immediately gives the same result 

for J~ as well). Now we have to consider the matrix D~; it is a block-matrix 

having m 2 x 2 matrices Bk along the diagonal and zeros below; here 

x2:_lX2:(x2k - 1) 1 -  x21_lX2:(x2k_l - 1 ) )  

\ x 2k - -  X 2 k  X 2 k - - 1  

1 < k < m. It can be easily verified that every matrix Bk has the inverse 

\ x2k-1 x2k - 1 

Hence the matrix D~ is invertible, and so is the matrix De0, ) on the left-hand 

side of (3). This completes the proof of part (i) of the theorem. 

(ii) The proof goes along the same lines as that of (i) after replacing the group 

ring Z F  with Z2F. On the right-hand side of (1), the elements r will 

have augmentation 0 because, in the ring Z2F, one has dk(u) E AF whenever 

u E F 2. Then, Birman's theorem remains valid on replacing Z F  with Z2F: in one 

direction, it follows from the "chain rule" in Z2F (see Remark 2.3); in another 

direction, Birman's proof amounts to the following: if Yl , . . . ,  yn, g are elements of 

F,  an:l ( g -  1) belongs to the right ideal of Z F  generated by (Yl - 1 ) , . . . ,  (Yn - 1), 

then g belongs to the subgroup of F generated by Yl , . . . ,  Y,~. But this holds in 

2 2 2 the matrix D~ an arbitrary group ring (see e.g. [9]). Finally, for u = x l x 2 . . . x , ,  
is an upper triangular matrix with the units on the diagonal; in particular, it is 

invertible over any ring, and this completes the proof. 
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It  is easy to produce many examples of elements u of the group ring Z F  with D~ 

invertible. However, in the group F itself, the only elements with this property 

I know are [xl,x2] �9 �9 �9 [x,~_l,X,~], XlX22 2 . . .  x~2 and their automorphic images. I 

have no idea about  what makes the double Jacobian matrix of an element u E F 

invertible. It  is clear that  if an element u E F has the matrix D~ invertible, then 

it is a test element for recognizing automorphisms; the converse, however, is not 

true. For example, elements of the form P p XlX2"'" X p,  p > 3, being test elements, 

have double Jacobian matr ix  non-invertible. 

Remark 3.2: If  we switch left and right Fox derivatives in the definition of the 

double Jacobian matrix,  i.e., put D" = [td~(d}(u))[Ii<i<,~, then D" appears to be 

the transpose of D~,. This follows from the "combinatorial" definition of the Fox 

derivatives (see [4]). In particular, Theorem 3.1 holds also on replacing Dr 

with D'  ~(,*)" 

THEOREM 3.3: Let r be an endomorphism of the group F linearly extended to 

ZF;  u = ~l<_i<n(xi - 1) 2, and let u E r  Then r is an automorphism. 

Proof'. Let u = r for some v E ZF.  We are going to prove that  this implies 

v E A~; then we can apply the argument from the proof of Theorem 3.1 because, 

for the given element u, the matrix D,, is just the the identity matrix, hence 

invertible. First we will prove it in the abelianized group ring Z ( F / F ' )  (we 

denote elements of Z F  and their natural  images in Z ( F / F ' )  by the same letters 

without ambiguity): 

LEMMA 3.4: Suppose in the group ring Z ( F / F ' ) ,  one has u = r for some 

group endomorphism r linearly extended to Z ( F / F ' ) ,  and u = El<_~<~(x~ - 1) 2. 

Then v E A2, A being the augmentation ideal of Z( F /  F'). 

Proof." Suppose v = Eci(xi - 1) + w, where w E A 2, and coefficients ci are 

non-zero. Then 

(4)  u = - 1) + r  

Let yi = r then (4) implies Eci(yi - 1) E A 2 which is possible only if 

Eci(yi - 1) = 0 in Z ( F / F ' ) .  Indeed, an obvious linear expansion shows that  

Eci(yi - 1) H ci _ c = = Yi 1 rood(A2), and if Hy i '  - 1 e A 2 in Z ( F / F ' ) ,  then Hy~' 1 

in the group F / F '  - -  see e.g. [4]. Hence we" have proved that  (4) actually implies 

u = r and this completes the proof of Lemma 3.4. 
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To comple te  now the proof  of the theorem,  it is sufficient to consider the image 

of the equali ty u = r  in the group ring Z ( F / F ' )  and apply  L e m m a  3.4. 

Now we are going to  show how one can dist inguish any two different endomor-  

phisms of F by means  of their  value on a single element of Z F .  

PROPOSITION 3.5: Let u = ~ l < _ i < n P i ( X i  - -  1) 2 with different odd integers Pi, and 

let r and r be two endomorphisms of  F such that r  = r  Then r = r 

Proo f  We need to prove the following: if for some elements  Y l , - - . ,  Y~, z l , . . . ,  z,~ 

of the  group F ,  one has El<i<,pi(yi  - 1) 2 = Nl<i<~pi(zi - 1) 2, then  Yi = zi, 

1 < i < n. This  will follow from another  s ta tement :  if in the group ring Z2F, 

one has El<i<kCi(yi -- 1) 2 ---- 0 for some ci E Z2 and pairwise dist inct  Yi E F ,  

then all coefficients ci are zero. 

Assume tha t  we have 2l<i<mci(yi - 1) 2 = 0 for some m > 2, non-tr ivial  yi, and 

non-zero ci E Z2, 1 < i < m. This  means  tha t  between yi, there are relat ions of 
2 2 the form yj = Yk, J r k. This  implies yj = Yk which contradic ts  the assumpt ion  

abou t  Yi. The  result  follows. 

To conclude this section, we note tha t  some of our results can be extended 

to  a more  general s i tuat ion of groups of the form F / R ' ,  R being an a rb i t r a ry  

normal  subgroup  of F ,  and R '  = JR, R] - -  its c o m m u t a t o r  subgroup.  Here we 

will consider generat ing sys tems instead of au tomorph i sms  to avoid restr ict ions 

on a group, like being Hopfian etc. 

We are going to use the following facts: 

(a) a set of e lements  generates  the group F modulo  R ~ if and only if it generates  

F modulo  [R', F]; 

(b) if g E [R', F],  then  g - 1 E A F A R A F  - -  see e.g. [5, p. 113]; 

(c) elements  Y l , . . . , Y n  generate  the  group F modulo  R' if and only if the 

m a t r i x  IlaR(dj(yi))lll<i,j<~ is invertible over the ring Z ( F / R )  - - s e e  [7]. 

Now we can come up with 

PROPOSITION 3.6: Elements  Y l , . . . ,  Y,~ genera te  the group F modulo R~: 

(i) ff  and  only ff  the matrix  aR(D~(~)) is invertible over Z ( F / R )  with u = 

[Xl, n even;  

(ii) i f  and only i f  the natural image over Z 2 ( F / R )  of  the matr ix  aR(D~(,,)) is 

invertible over Z 2 (F / R)  with u = x l x  2 . . .  xn.2 

Proo f  This  goes along the same lines as t ha t  of  Theo rem 3.1, but  we consider 

equali ty v = r  modulo  A F A R A F  (here we use (a) and (b)); equali ty (1) - -  
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modulo AFAR (by Lemma 2.1), and equalities (2) and (3) - -  modulo AR and 

Mn(AR)  respectively. Then we use Krasnikov's result (c) instead of Birman's to 

complete the proof. 

We note that a similar idea has been used in [6] while proving the "if' part of 

Nielsen's commutator test for two-generator groups of the form F/[R ~, F]. 

4. Tests e lements  in associative and Lie algebras 

Similar to the free groups situation, the first test element for automorphisms of 

algebras was discovered in the free associative algebra A2 of rank 2 - -  see [2]. 

We denote here by An the free associative algebra of rank n _> 2 with a fixed set 

{x~}, 1 < i < n, of free generators. By Ln we denote the free Lie algebra with 

the same generating set, and consider it naturally embedded into An. Both An 

and Ln are considered over the same field of characteristic zero. 

Fox calculus can be used in the algebras An in a natural way - -  see [14]. In 

[15], it has been used for proving the following characterization of homogeneous  

test elements of Lie algebra L~: a homogeneous element of Ln is a test element if 

and only if it does not belong to any proper free factor of L~ (in other words, any 

of its automorphic images depends on exactly n free generators). Furthermore, 

based on the description of generating systems for Ln/[R, R] algebras [14] (R 

being an arbitrary ideal of Ln) similar to Krasnikov's result for groups [7], we 

can prove the following analog of Proposition 3.5 (we use the obvious parallelism 

in the notation; in particular, An denotes the ideal of An generated by elements 

from R, and it is the kernel of the natural homomorphism aR : Ln -~ L n / R  

extended to the universal enveloping algebras): 

PROPOSITION 4.1 : Elements Y l , . . . ,  yn generate the algebra L,~ modulo JR, R ] / f  

and only if the matrix aa(Dr is invertible over A n / A R  with 

(i) ~ ---- [Xl, X2] "4- [X3, X4] - [ - ' ' "  -[- [Xn-l,Xn], • even; 

(ii) u = [Xl,X2] + [x2, x3] + " "  + [x~-l,x~]. 

Here [a, b] = ab - ba, Lie commutator of elements a and b. 

It is easy to see that the matrix D~ in both cases in invertible, so the argument 

from the proof of Theorem 3.1 (i) works in this situation as well. 

To characterize test elements of a free associative algebra is a more difficult 

problem because here we don't  have the facility of using the "inverse function 

theorem" like in a free group [1] or in a free Lie algebra [14] situation. However, 
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in the case of A2, the free associat ive algebra of rank  2, we do have someth ing  

similar - -  see [2], [13]. This  enables us, for example ,  to find stabilizers in Aut  A2 

of some par t icular  elements  from A2 by using our method:  

PROPOSITION 4.2: An  automorphism r of  the algebra A2 fixes the element u = 

XlX2 + x~xl  i f  and only i f  either r  = aXl,  r  = (1 /a)x2 ,  or r  = 

ax2,  r  = (1 /a )Xl  for some non-zero a �9 It'. 

Proof: Proceeding as in the proof  of Theo rem 3.1 (i), we arrive at  

r  = D~ = / [ 0  where 
1 \ 

Du = J~r162 

~ ) . J i B  = I ,  ident i ty matr ix ;  Thus  the here 

u =  {d (y2) 
\ d l ( y 2 )  d i ( y l )  ' 

On the other  hand,  by the result  of [13] we have J'cB' = 13I, where 

B ~ = ( d 2 ( y , 2 )  - d 2 ( y l )  t 
- d , ( y 2 )  dl(y~) ' 

and ~3 E K ,  a non-zero element.  This  implies the following set of al ternatives:  

(1)  d2( 1) = 0 or d' (yl) = 0; 

(2) dl(y2) = 0 or d~(y2) = 0; 

(3) d2(yl) = a or d~(y2) = ~ for an appropr ia te  ~ G K;  

(4) dl(y2) = a or d~2(yl) = ~ for an appropr ia te  a E K .  

Considering all possible combinat ions  yields the result; we omi t  the details. 
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